Abnormal Gait Detection Using Wearable Hall-Effect Sensors

Author:

Chheng CourtneyORCID,Wilson Denise

Abstract

Abnormalities and irregularities in walking (gait) are predictors and indicators of both disease and injury. Gait has traditionally been monitored and analyzed in clinical settings using complex video (camera-based) systems, pressure mats, or a combination thereof. Wearable gait sensors offer the opportunity to collect data in natural settings and to complement data collected in clinical settings, thereby offering the potential to improve quality of care and diagnosis for those whose gait varies from healthy patterns of movement. This paper presents a gait monitoring system designed to be worn on the inner knee or upper thigh. It consists of low-power Hall-effect sensors positioned on one leg and a compact magnet positioned on the opposite leg. Wireless data collected from the sensor system were used to analyze stride width, stride width variability, cadence, and cadence variability for four different individuals engaged in normal gait, two types of abnormal gait, and two types of irregular gait. Using leg gap variability as a proxy for stride width variability, 81% of abnormal or irregular strides were accurately identified as different from normal stride. Cadence was surprisingly 100% accurate in identifying strides which strayed from normal, but variability in cadence provided no useful information. This highly sensitive, non-contact Hall-effect sensing method for gait monitoring offers the possibility for detecting visually imperceptible gait variability in natural settings. These nuanced changes in gait are valuable for predicting early stages of disease and also for indicating progress in recovering from injury.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Poster: Motion Sensor Based Dragging Feet Detection Using Lightweight Classification Model;2024 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE);2024-06-19

2. Magnetic Micro and Nano Sensors for Continuous Health Monitoring;Micro;2024-04-06

3. A Novel Wearable Device to Indicate Sciatic Nerve Pressure;2024 5th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV);2024-03-11

4. Flexible Iron-On Sensor Embedded in Smart Sock for Gait Event Detection;ACS Applied Materials & Interfaces;2023-12-18

5. Smart Insoles for Gait Analysis Based on Meshless Conductive Rubber Sensors and Neural Networks;Journal of Physics: Conference Series;2023-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3