Affiliation:
1. Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island, New York, NY 10314, USA
2. PhD Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
3. Macaulay Honors College, City University of New York, New York, NY 10023, USA
Abstract
Biofilms remain one of the most pervasive complications of the medical field, representing 50–70% of all nosocomial infections and up to 80% of total microbial infections. Since biofilms contain intricately small matrices, different microenvironments, and accumulations of biodiverse microorganisms of different resistances, these structures end up being difficult to target. As we review in this paper, 3D printing and nanotechnology help overcome these unique challenges of targeting biofilms, especially within the medical field. These technologies bring versatility and more precise control to personalized reusable medical device development and implants, with enhanced antimicrobial characteristics. They allow for decreased surface roughness of the implants, smaller pores, more targeted topography, and even added antibiotic or drug-releasing abilities for the medical devices. Furthermore, combining 3D with nanoparticles allows for the creation of anodized nanosurfaces of medical implants with increased osseointegration and reduced polymerization while promoting cost efficiency, durability, and biocompatibility. In this review, we explore the potentially valuable antimicrobial consequences of applying 3D technology and nanoengineering to dental and orthodontic implants, oral prostheses, hearing aids, joint replacements, catheters, stents, endotracheal tubes, prosthetics, and bone scaffolds.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献