Morphology, Mechanical Properties, and Biodegradability of Modified Thermoplastic Starch/PETG Blends with In Situ Generated Graft Copolymers

Author:

Kulkarni Apoorva12ORCID,Narayan Ramani1

Affiliation:

1. Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA

2. Saint-Gobain NRDC, Northborough, MA 01352, USA

Abstract

This paper reports on synthesis of modified thermoplastic starch (MTPS) and glycol-modified polyethylene terephthalate (PETG) blends in a twin-screw extruder. Scanning electron microscopy (SEM) images showed uniform, microdispersion of MTPS in PETG matrix, confirming compatibilization of the blend by graft copolymers generated in situ during the reactive extrusion process. Incorporating 30% by wt. MTPS in the blend gives a biobased carbon content of 22.8%, resulting in reduced carbon footprint by removal of 0.5 kg CO2 from the environment/kg resin relative to unmodified PETG. MTPS with 80% glycerol grafted onto starch was prepared by reactive extrusion in the twin-screw extruder. A total of 33% of added PETG was grafted on MTPS backbone as determined by soxhlet extraction with dichloromethane (DCM). The grafting was confirmed by presence of PETG peak in the TGA analysis of residue and appearance of carbonyl peak in FTIR spectra of the residue after Soxhlet extraction. The synthesized MTPS–PETG reactive blend had lower but acceptable mechanical properties. Even after a 15% reduction in the tensile stress and 40% reduction in the strain and impact strength obtained after adding 30% MTPS, this blend still had good mechanical properties and can be used in many applications requiring a balance of cost, mechanical properties, and biobased content. Aqueous biodegradability studies using ISO 14852 showed that the 30% starch component in the blend biodegraded rapidly within 80 days, whereas PETG remained as it was even after 150 days. Thus, this study categorically proves that addition of starch does not improve the biodegradability of nonbiodegradable polymers.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference44 articles.

1. Narayan, R. (2020). Handbook of Biodegradable Polymers, Wiley.

2. Biobased and Biodegradable Polymer Materials: Rationale, Drivers, and Technology Exemplars;Ramani;Degrad. Polym. Mater.,2005

3. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life;Law;Nat. Rev. Mater.,2021

4. Narayan, R. (2017). Biodegradable and Biobased Plastics: An Overview. Soil Degrad. Bioplastics Sustain. Mod. Agric., 23–34.

5. Bioplastics for a circular economy;Rosenboom;Nat. Rev. Mater.,2022

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3