RT-CLAD: Artificial Intelligence-Based Real-Time Chironomid Larva Detection in Drinking Water Treatment Plants

Author:

Jang Goeun1,Yeo Wooseong2,Park Meeyoung2ORCID,Park Yong-Gyun1

Affiliation:

1. Department of Environmental and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea

2. Department of Computer Engineering, Kyungnam University, 7 Gyeongnamdaehak-ro, Masanhappo-gu, Changwon-si 51767, Republic of Korea

Abstract

The presence of chironomid larvae in tap water has sparked public concern regarding the water supply system in South Korea. Despite ongoing efforts to establish a safe water supply system, entirely preventing larval occurrences remains a significant challenge. Therefore, we developed a real-time chironomid larva detection system (RT-CLAD) based on deep learning technology, which was implemented in drinking water treatment plants. The acquisition of larval images was facilitated by a multi-spectral camera with a wide spectral range, enabling the capture of unique wavelet bands associated with larvae. Three state-of-the-art deep learning algorithms, namely the convolutional neural network (CNN), you only look once (YOLO), and residual neural network (ResNet), renowned for their exceptional performance in object detection tasks, were employed. Following a comparative analysis of these algorithms, the most accurate and rapid model was selected for RT-CLAD. To achieve the efficient and accurate detection of larvae, the original images were transformed into a specific wavelet format, followed by preprocessing to minimize data size. Consequently, the CNN, YOLO, and ResNet algorithms successfully detected larvae with 100% accuracy. In comparison to YOLO and ResNet, the CNN algorithm demonstrated greater efficiency because of its faster processing and simpler architecture. We anticipate that our RT-CLAD will address larva detection challenges in water treatment plants, thereby enhancing water supply security.

Funder

Korea Ministry of Environment

Korea government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3