Methodology for Creating a Digital Bathymetric Model Using Neural Networks for Combined Hydroacoustic and Photogrammetric Data in Shallow Water Areas

Author:

Łącka Małgorzata1,Łubczonek Jacek1ORCID

Affiliation:

1. Maritime University of Szczecin, Waly Chrobrego 1–2, 70-500 Szczecin, Poland

Abstract

This study uses a neural network to propose a methodology for creating digital bathymetric models for shallow water areas that are partially covered by a mix of hydroacoustic and photogrammetric data. A key challenge of this approach is the preparation of the training dataset from such data. Focusing on cases in which the training dataset covers only part of the measured depths, the approach employs generalized linear regression for data optimization followed by multilayer perceptron neural networks for bathymetric model creation. The research assessed the impact of data reduction, outlier elimination, and regression surface-based filtering on neural network learning. The average values of the root mean square (RMS) error were successively obtained for the studied nearshore, middle, and deep water areas, which were 0.12 m, 0.03 m, and 0.06 m, respectively; moreover, the values of the mean absolute error (MAE) were 0.11 m, 0.02 m, and 0.04 m, respectively. Following detailed quantitative and qualitative error analyses, the results indicate variable accuracy across different study areas. Nonetheless, the methodology demonstrated effectiveness in depth calculations for water bodies, although it faces challenges with respect to accuracy, especially in preserving nearshore values in shallow areas.

Funder

Polish Ministry of Education and Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3