A Progressive Plane Detection Filtering Method for Airborne LiDAR Data in Forested Landscapes

Author:

Cai Shangshu1,Liang Xinlian1,Yu Sisi234ORCID

Affiliation:

1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430070, China

2. Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China

3. Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China

4. Department of Public Administration, Law School, Shantou University/Institute of Local Government Development, Shantou University, Shantou 515063, China

Abstract

Ground filtering is necessary in processing airborne light detection and ranging (LiDAR) point clouds for forestry applications. This study proposes a progressive plane detection filtering (PPDF) method. First, the method uses multi-scale planes to characterize terrain, i.e., the local terrain with large slope variations is represented by small-scale planes, and vice versa. The planes are detected in local point clouds by the random sample consensus method with decreasing plane sizes. The reliability of the planes to represent local terrain is evaluated and the planes with optimal sizes are selected according to evaluation results. Then, ground seeds are identified by selecting the interior points of the planes. Finally, ground points are iteratively extracted based on the reference terrain, which is constructed using evenly distributed neighbor ground points. These neighbor points are identified by selecting the nearest neighbor points of multiple subspaces, which are divided from the local space with an unclassified point as center point. PPDF was tested in six sites with various terrain and vegetation characteristics. Results showed that PPDF was more accurate and robust compared to the classic filtering methods including maximum slope, progressive morphology, cloth simulation, and progressive triangulated irregular network densification filtering methods, with the smallest average total error and standard deviation of 3.42% and 2.45% across all sites. Moreover, the sensitivity of PPDF to parameters was low and these parameters can be set as fixed values. Therefore, PPDF is effective and easy-to-use for filtering airborne LiDAR data.

Funder

Natural Science Fund of China

Wuhan University

Open Fund of Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake, Ministry of Natural Resources

International S&T Cooperation Program of Hubei Province

National Key R&D Program of China

Open Fund of Key Research Base of Philosophy and Social Science of Higher Education in Guangdong Province - Local Government Development Research Institute of Shantou University

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3