Effect of Biochar Modification by Vitamin C, Hydrogen Peroxide or Silver Nanoparticles on Its Physicochemistry and Tetracycline Removal

Author:

Tomczyk AgnieszkaORCID,Szewczuk-Karpisz KatarzynaORCID

Abstract

Chemical modification of biochars can improve their adsorption capacity relative to antibiotics, posing a serious threat to the environment. Therefore, this research is aimed at the treatment of sunflower husk biochar (BC) by vitamin C, hydrogen peroxide or silver nanoparticles and the impact of this procedure on the biochar porosity, surface chemistry, and ability to remove tetracycline (TC). During the study, BC was produced by pyrolysis of sunflower husks at 650 °C. All solids were characterized using potentiometric titration, nitrogen adsorption/desorption, Fourier transform infrared spectroscopy, etc. The experimental adsorption data was described by kinetics equations: pseudo-first order, pseudo-second order, and particle internal diffusion (IPD) models as well as by isotherms of Langmuir, Langmuir-Freundlich, and Redlich-Peterson. The obtained results indicated that the biochar upgraded by vitamin C (BCV) had the highest ability to attract antibiotic molecules and, as a result, the TC adsorption on its surface was the largest. Furthermore, the TC desorption from this material was minimal. The measured TC adsorbed amounts for the modified BCs were as follows: 47.75% (7.47 mg/g) for BCV, 37.35% (8.41 mg/g)-for biochar treated by hydrogen peroxide (BCH), and 42.04% (9.55 mg/g) for biochar modified by silver nanoparticles (BCA). The lowest adsorption level was noted for non-modified biochar, i.e., 34.17% (6.83 mg/g). Based on the presented results it can be stated that the upgraded biochars had a good potential to improve the tetracycline removal from aqueous media, e.g., groundwater.

Funder

National Science Centre, Poland

Publisher

MDPI AG

Subject

General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3