Scientometric Review for Research Patterns on Additive Manufacturing of Lattice Structures

Author:

Amaechi Chiemela VictorORCID,Adefuye Emmanuel Folarin,Kgosiemang Irish Mpho,Huang BoORCID,Amaechi Ebube Charles

Abstract

Over the past 15 years, interest in additive manufacturing (AM) on lattice structures has significantly increased in producing 3D/4D objects. The purpose of this study is to gain a thorough grasp of the research pattern and the condition of the field’s research today as well as identify obstacles towards future research. To accomplish the purpose, this work undertakes a scientometric analysis of the international research conducted on additive manufacturing for lattice structure materials published from 2002 to 2022. A total of 1290 journal articles from the Web of Science (WoS) database and 1766 journal articles from the Scopus database were found using a search system. This paper applied scientometric science, which is based on bibliometric analysis. The data were subjected to a scientometric study, which looked at the number of publications, authorship, regions by countries, keyword co-occurrence, literature coupling, and scientometric mapping. VOSviewer was used to establish research patterns, visualize maps, and identify transcendental issues. Thus, the quantitative determination of the primary research framework, papers, and themes of this research field was possible. In order to shed light on current developments in additive manufacturing for lattice structures, an extensive systematic study is provided. The scientometric analysis revealed a strong bias towards researching AM on lattice structures but little concentration on technologies that emerge from it. It also outlined its unmet research needs, which can benefit both the industry and academia. This review makes a prediction for the future, with contributions by educating researchers, manufacturers, and other experts on the current state of AM for lattice structures.

Funder

Lancaster University

Engineering and Physical Sciences Research Council

Niger Delta Development Commission

Publisher

MDPI AG

Subject

General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3