Simulation and Attribution Analysis of Spatial–Temporal Variation in Carbon Storage in the Northern Slope Economic Belt of Tianshan Mountains, China

Author:

Zhang Kun12345,Wang Yu2345,Mamtimin Ali2345ORCID,Liu Yongqiang1,Zhang Lifang1,Gao Jiacheng2345,Aihaiti Ailiyaer2345,Wen Cong2345ORCID,Song Meiqi2345,Yang Fan2345,Zhou Chenglong2345,Huo Wen2345ORCID

Affiliation:

1. College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China

2. Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China

3. National Observation and Research Station of Desert Meteorology, Taklimakan Desert of Xinjiang, Urumqi 830002, China

4. Taklimakan Desert Meteorology Field Experiment Station of China Meteorological Administration, Urumqi 830002, China

5. Xinjiang Key Laboratory of Desert Meteorology and Sandstorm, Urumqi 830002, China

Abstract

Intensive economic and human activities present challenges to the carbon storage capacity of terrestrial ecosystems, particularly in arid regions that are sensitive to climate change and ecologically fragile. Therefore, accurately estimating and simulating future changes in carbon stocks on the northern slope economic belt of Tianshan Mountains (NSEBTM) holds great significance for maintaining ecosystem stability, achieving high-quality development of the economic belt, and realizing the goal of “carbon neutrality” by 2050. This study examines the spatiotemporal evolution characteristics of the NSEBTM carbon stocks in arid regions from 1990 to 2050, utilizing a combination of multi-source data and integrating the Patch-generating Land use Simulation (PLUS) and Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) models. Additionally, an attribution analysis of carbon stock changes is conducted by leveraging land use data. The findings demonstrate that (1) the NSEBTM predominantly consists of underutilized land, accounting for more than 60% of the total land area in the NSEBTM. Unused land, grassland, and water bodies exhibit a declining trend over time, while other forms of land use demonstrate an increasing trend. (2) Grassland serves as the primary reservoir for carbon storage in the NSEBTM, with grassland degradation being the leading cause of carbon loss amounting to 102.35 t over the past three decades. (3) Under the ecological conservation scenario for 2050 compared to the natural development scenario, there was a net increase in carbon storage by 12.34 t; however, under the economic development scenario compared to the natural development scenario, there was a decrease in carbon storage by 25.88 t. By quantitatively evaluating the land use change in the NSEBTM and its impact on carbon storage in the past and projected for the next 30 years, this paper provides scientific references and precise data support for the territorial and spatial decision making of the NSEBTM, thereby facilitating the achievement of “carbon neutrality” goals.

Funder

National Natural Science Foundation of China

Investigation of air pollution in the economic belt on the Northern Slope Economic Belt of Tianshan Mountains

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3