Tracking Land-use Trajectory and Other Potential Drivers to Uncover the Dynamics of Carbon Stocks of Terrestrial Ecosystem in the Songnen Plain

Author:

Chang Lei1,Luo Han1,Liu Huijia1,Xu Wenxin1,Zhang Lixin1,Li Yuefen1ORCID

Affiliation:

1. College of Earth Sciences, Jilin University, Changchun 130061, China

Abstract

Land-use change is an important factor affecting terrestrial carbon balance, and it is crucial to explore the response of terrestrial carbon stocks to land-use change, especially in the Songnen Plain, which faces a fierce conflict between the rapid growth of production activities and ecosystem degradation. In this study, we measured soil organic carbon and vegetation biocarbon stocks in the Songnen Plain based on IPCC-recommended methodologies, and explored the characteristics of carbon stock changes in land-use trajectories, land-use drivers, and specific land-use change scenarios (cropland cultivation, returning cropland to forests, the expansion of land for construction, deforestation, greening, and land degradation). The results showed that soil organic carbon stock in the Songnen Plain decreased by 1.63 × 105 t, and vegetation biocarbon stock increased by 2.10 × 107 t from 2005 to 2020. Human factors and natural factors jointly contributed to the land-use change, but the extent of the role of human factors was greater than that of natural factors. The increase in land-use trajectory led to the decrease in soil organic carbon stock and the increase in vegetation biocarbon stock. There was no difference in the effects of human-induced and natural-induced land-use changes on vegetation biocarbon stocks, but the effects on soil organic carbon stocks were diametrically opposite, increasing by 43.27 t/km2 and decreasing by 182.02 t/km2, respectively. The reclamation of arable land, returning cropland to forests, and greening led to a net increase in terrestrial carbon stocks (+813,291.84 t), whereas land degradation, deforestation, and land-use expansion led to a decrease in terrestrial carbon stocks (−460,710.2 t). The results of this study can provide a reference for the adjustment of land-use structure and the increase in terrestrial carbon stock in the Songnen Plain.

Funder

National Natural Science Foundation of China

Science and Technology Development Plan Project of Jilin Province

Natural Science Foundation of Jilin Province, China

Publisher

MDPI AG

Reference80 articles.

1. Global carbon budget 2014;Quere;Earth Syst. Sci. Data.,2015

2. Carbon sequestration and the role of biological carbon mitigation: A review. Renew. Sustain;Farrelly;Energy Rev.,2013

3. Global Carbon Budget 2020;Friedlingstein;Earth Syst. Sci. Data.,2020

4. Estimates of variation in Chinese terrestrial carbon storage under an environmental conservation policy scenario for 2000–2025;Zhang;J. Res. Ecol.,2021

5. Carbon sequestration benefits of the grain for Green Program in the hilly red soil region of southern China;Hu;Int. Soil Water Conserv. Res.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3