Real-Time 3D Reconstruction Method Based on Monocular Vision

Author:

Jia Qingyu,Chang LiangORCID,Qiang Baohua,Zhang Shihao,Xie Wu,Yang Xianyi,Sun Yangchang,Yang Minghao

Abstract

Real-time 3D reconstruction is one of the current popular research directions of computer vision, and it has become the core technology in the fields of virtual reality, industrialized automatic systems, and mobile robot path planning. Currently, there are three main problems in the real-time 3D reconstruction field. Firstly, it is expensive. It requires more varied sensors, so it is less convenient. Secondly, the reconstruction speed is slow, and the 3D model cannot be established accurately in real time. Thirdly, the reconstruction error is large, which cannot meet the requirements of scenes with accuracy. For this reason, we propose a real-time 3D reconstruction method based on monocular vision in this paper. Firstly, a single RGB-D camera is used to collect visual information in real time, and the YOLACT++ network is used to identify and segment the visual information to extract part of the important visual information. Secondly, we combine the three stages of depth recovery, depth optimization, and deep fusion to propose a three-dimensional position estimation method based on deep learning for joint coding of visual information. It can reduce the depth error caused by the depth measurement process, and the accurate 3D point values of the segmented image can be obtained directly. Finally, we propose a method based on the limited outlier adjustment of the cluster center distance to optimize the three-dimensional point values obtained above. It improves the real-time reconstruction accuracy and obtains the three-dimensional model of the object in real time. Experimental results show that this method only needs a single RGB-D camera, which is not only low cost and convenient to use, but also significantly improves the speed and accuracy of 3D reconstruction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3