Neuroprotective Effects of Sparassis crispa Ethanol Extract through the AKT/NRF2 and ERK/CREB Pathway in Mouse Hippocampal Cells

Author:

Pak Malk Eun1ORCID,Li Wei1ORCID

Affiliation:

1. Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea

Abstract

Sparassis crispa, known as the “Cauliflower mushroom”, is an edible medicinal fungus found in Asia, Europe, and North America. Its fruiting bodies contain active biological and pharmacological ingredients with antitumor and anti-inflammatory properties. In this study, we investigated the neuroprotective effect of various Sparassis crispa extract against glutamate-induced toxicity and oxidative stress in hippocampal HT22 cells. Cell viability and reactive oxygen species (ROS) analyses served to evaluate the neuroprotective effects of Sparassis crispa ethanol extract (SCE) and their fractions partitioned with ethyl acetate (EtOAc; SCE-E) and water (SCE-W) in HT22 cells. SCE and SCE-E treatment reduced glutamate-induced cell death and ROS generation. SCE-E reduced apoptosis and ROS levels by regulating anti-apoptotic proteins. Under glutamate treatment, SCE-E activated nuclear factor erythroid-derived 2-related factor 2 (Nrf2) and regulated extracellular signal-regulated kinase (ERK) and AKT signals at late stages. SCE-E increased the protein expression of cAMP response element binding (CREB), brain-derived neurotrophic factor (BDNF), and Kelch-like ECH-associated protein 1 (Keap1), and decreased the Nrf2 protein expression. Moreover, co-treatment of SCE-E and wortmannin did not activate Nrf2 expression. Thus, the neuroprotective effect of SCE-E is likely due to Nrf2 and CREB activation through AKT and ERK phosphorylation, which effectively suppress glutamate-induced oxidative stress in HT22 cells. Accordingly, a daily supplement of SCE-E could become a potential treatment for oxidative-stress-related neurological diseases.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3