Evolution of Proliferative Model Protocells Highly Responsive to the Environment

Author:

Matsuo Muneyuki,Toyota Taro,Suzuki KentaroORCID,Sugawara Tadashi

Abstract

In this review, we discuss various methods of reproducing life dynamics using a constructive approach. An increase in the structural complexity of a model protocell is accompanied by an increase in the stage of reproduction of a compartment (giant vesicle; GV) from simple reproduction to linked reproduction with the replication of information molecules (DNA), and eventually to recursive proliferation of a model protocell. An encounter between a plural protic catalyst (C) and DNA within a GV membrane containing a plural cationic lipid (V) spontaneously forms a supramolecular catalyst (C@DNA) that catalyzes the production of cationic membrane lipid V. The local formation of V causes budding deformation of the GV and equivolume divisions. The length of the DNA strand influences the frequency of proliferation, associated with the emergence of a primitive information flow that induces phenotypic plasticity in response to environmental conditions. A predominant protocell appears from the competitive proliferation of protocells containing DNA with different strand lengths, leading to an evolvable model protocell. Recently, peptides of amino acid thioesters have been used to construct peptide droplets through liquid–liquid phase separation. These droplets grew, owing to the supply of nutrients, and were divided repeatedly under a physical stimulus. This proposed chemical system demonstrates a new perspective of the origins of membraneless protocells, i.e., the “droplet world” hypothesis. Proliferative model protocells can be regarded as autonomous supramolecular machines. This concept of this review may open new horizons of “evolution” for intelligent supramolecular machines and robotics.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference79 articles.

1. The Emergence of Life: From Chemical Origin of Synthetic Biology;Luisi,2006

2. The Systems View of Life;Capra,2014

3. Is Research on “Synthetic Cells” Moving to the Next Level?

4. Principle of Physical Chemistry;Kuhn,2000

5. Synthetic Approach to biomolecular science by cyborg supramolecular chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3