Abstract
CO2 (GWP = 1) is considered as a promising natural alternative refrigerant to HFC-134a in mobile air conditioning (MAC) applications. The objective of this study is to investigate the cooling performance characteristics of a CO2 MAC system. A prototype CO2 MAC system, consisting of a CO2 electrical compressor, CO2 parallel flow microchannel heat exchangers, and an electrical expansion valve, was developed and tested. Factor analysis experiments were conducted to reveal the effect of outdoor temperature on the cooling performance of this CO2 MAC system. Compared with a conventional R134a MAC system, the prototype CO2 MAC system achieved comparable cooling capacity, but had COP reductions of 26% and 10% at 27 °C and 45 °C outdoor conditions, respectively. In addition, based on refrigerant properties, theoretical cycle analysis was done to reveal the impact of evaporator, gas cooler and compressor, on the system cooling performance. It is concluded that the increase of overall compressor efficiency or the decrease of gas cooler approaching temperature could greatly improve the COP of this CO2 MAC system.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献