Free Surface Motion of a Liquid Pool with Isothermal Sidewalls as a Benchmark for Marangoni Convection Problems

Author:

Ciccotosto Bruce E.1ORCID,Brooks Caleb S.1

Affiliation:

1. Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA

Abstract

In single phase flows, benchmarks like the lid driven cavity have become recognized as fundamental tests for newly developed computational fluid dynamics, CFD, codes. For multiphase free surface flows with variable surface tension, the presently studied pool with isothermal sidewalls is suggested as it is the simplest domain where Marangoni effects can dominate. It was also chosen due to its strange sensitivity to the initial setup which is discussed at length from a chosen number of ‘scenarios’. It was found that the fluid interface can reverse deformation by a change in the top boundary condition, the liquid equation of state, and the gravity level. For the top boundary condition, this reversal is due to vapor expansion within the closed volume, creating an additional convection mechanism. Not only does the interface reverse, but the peak height changes by more than an order of magnitude at the same Marangoni number. When including gravity, the peak velocity can increase significantly, but it can also cause a decrease when done in combination with a change in the top wall boundary condition. Finally, thermal expansion of the liquid phase causes the peak velocity to be reduced, with additional reductions from the gravity and top wall condition. The differences in each scenario could lead to significant errors in analyzing a practical application of Marangoni flows. Therefore, it is important to demonstrate that a new CFD code can not only resolve Marangoni convection, but also has the capability to resolve the scenario most relevant to the application at hand.

Funder

US Department of Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3