Affiliation:
1. Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
Abstract
In regions characterized by continuous permafrost, hydrological modeling remains a complex activity, primarily due to constraints related to the prevailing climatic conditions and the specific behavior of the active layer. High-latitude regions receive less solar radiation; thus, most creeks are active only during summertime and stay frozen in the winter. To realistically simulate watersheds underlain by continuous permafrost, the heat transfer through the soil needs to be accounted for in the modeling process. In this study, a watershed located in a continuous permafrost zone in Russia is investigated. A model is proposed to integrate this heat transfer into an existing conceptual rain-flow transformation model, Hydrologiska Byråns Vattenbalansavdelning (HBV), to calculate the seasonal thaw depth and determine the components of water balance. The proposed integration is a novelty compared to the standard model, as it enables the physical and thermal properties of the soil to be taken into account. It was found that the proposed model, HBV-Heat, performs better than the stand-alone HBV model. Specifically, the average Nash–Sutcliffe efficiency (NSE) increases by 30% for the whole calibration period. In terms of the water balance components, the results are consistent with previous studies, showing that surface runoff represents 64% of the observed precipitation.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry