Cathepsin B-Cleavable Polymeric Photosensitizer Prodrug for Selective Photodynamic Therapy: In Vitro Studies

Author:

Jain ManishORCID,Bouilloux JordanORCID,Borrego Ines,Cook Stéphane,van den Bergh Hubert,Lange NorbertORCID,Wagnieres GeorgesORCID,Giraud Marie-NoelleORCID

Abstract

Cathepsin B is a lysosomal cysteine protease that plays an important role in cancer, atherosclerosis, and other inflammatory diseases. The suppression of cathepsin B can inhibit tumor growth. The overexpression of cathepsin B can be used for the imaging and photodynamic therapy (PDT) of cancer. PDT targeting of cathepsin B may have a significant potential for selective destruction of cells with high cathepsin B activity. We synthesized a cathepsin B-cleavable polymeric photosensitizer prodrug (CTSB-PPP) that releases pheophorbide a (Pha), an efficient photosensitizer upon activation with cathepsin B. We determined the concentration dependant uptake in vitro, the safety, and subsequent PDT-induced toxicity of CTSB-PPP, and ROS production. CTSB-PPP was cleaved in bone marrow cells (BMCs), which express a high cathepsin B level. We showed that the intracellular fluorescence of Pha increased with increasing doses (3–48 µM) and exerted significant dark toxicity above 12 µM, as assessed by MTT assay. However, 6 µM showed no toxicity on cell viability and ex vivo vascular function. Time-dependent studies revealed that cellular accumulation of CTSB-PPP (6 µM) peaked at 60 min of treatment. PDT (light dose: 0–100 J/cm2, fluence rate: 100 mW/cm2) was applied after CTSB-PPP treatment (6 µM for 60 min) using a special frontal light diffuser coupled to a diode laser (671 nm). PDT resulted in a light dose-dependent reduction in the viability of BMCs and was associated with an increased intracellular ROS generation. Fluorescence and ROS generation was significantly reduced when the BMCs were pre-treated with E64-d, a cysteine protease inhibitor. In conclusion, we provide evidence that CTSB-PPP showed no dark toxicity at low concentrations. This probe could be utilized as a potential imaging agent to identify cells or tissues with cathepsin B activity. CTSB-PPP-based PDT results in effective cytotoxicity and thus, holds great promise as a therapeutic agent for achieving the selective destruction of cells with high cathepsin B activity.

Funder

Swiss National Science Foundation

Fonds Scientifique Cardiovasculaire FSC, Fribourg Hospital

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3