Numerical Simulation and Experimental Study of Gas–Solid Two-Phase Spraying of Dry Powder Fire-Extinguishing System Based on Fire-Extinguishing Inspection Robot

Author:

Chu Shengli1,Chen Tao2,Gan Yifan1ORCID,Liu Yixin3,Zheng Wenpei3,Tang Yan4,Zhou Wendong5

Affiliation:

1. CNPC Research Institute of Safety & Environment Technology, Beijing 102206, China

2. East China Engineering Science and Technology Co., Ltd., Hefei 230041, China

3. Key Laboratory of Oil and Gas Safety and Emergency Technology, Ministry of Emergency Management, China University of Petroleum (Beijing), Beijing 102249, China

4. School of Safety Science and Engineering, Changzhou University, Changzhou 213164, China

5. Shandong Key Laboratory of Mining Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

In order to solve the problem where the traditional intelligent inspection robot only has a single inspection function, we studied the use of a dry powder (including an ultra-fine dry powder) as a fire-extinguishing medium for the first time. In fire-extinguishing robots, the spray pressure is difficult to control, and there are several other issues. For integrated inspection, an intelligent, nitrogen-driven fire-extinguishing robot using a dry powder in a pressure-controlled spray was developed. On this basis, in order to investigate nitrogen-driven dry powder particle spraying as a gas–solid two-phase mechanism, as well as the flow characteristics and the influence of relevant parameters on the spraying effect, a nitrogen-driven dry powder particle spraying system was established as part of a gas–solid two-phase computational fluid dynamics model. The flow field of the spraying system and the particle motion characteristics were analyzed to explore the micro-mechanisms of the influence of different driving pressures, pipe diameters, and nozzle configurations on the spraying of the dry powder. In order to investigate the macroscopic effect of dry powder spraying where the gas–solid two-phase micro-mechanisms could not be revealed, an experimental platform was set up, and the experiments verified the accuracy of the numerical simulation results. We also investigated the dry powder spraying effect under different driving pressures, pipe diameters, nozzle configurations, and loading ratios. Finally, an orthogonal test was designed based on the results of the single-factor experiments to find the best combination of parameters required to achieve the optimal spraying effect. The research results can provide a theoretical and technical reference for the design and development of nitrogen-driven dry powder spraying systems.

Funder

Scientific Research and Technology Development Project of CNPC

Shandong Key Laboratory of Mining Disaster Prevention and Control, Shandong University of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3