Influence of C3N4 Precursors on Photoelectrochemical Behavior of TiO2/C3N4 Photoanode for Solar Water Oxidation

Author:

Bhat Swetha S. M.,Jun Sang Eon,Lee Sol A,Lee Tae Hyung,Jang Ho Won

Abstract

Photoelectrochemical water splitting is considered as a long-term solution for the ever-increasing energy demands. Various strategies have been employed to improve the traditional TiO2 photoanode. In this study, TiO2 nanorods were decorated by graphitic carbon nitride (C3N4) derived from different precursors such as thiourea, melamine, and a mixture of thiourea and melamine. Photoelectrochemical activity of TiO2/C3N4 photoanode can be modified by tuning the number of precursors used to synthesize C3N4. C3N4 derived from the mixture of melamine and thiourea in TiO2/C3N4 photoanode showed photocurrent density as high as 2.74 mA/cm2 at 1.23 V vs. RHE. C3N4 synthesized by thiourea showed particle-like morphology, while melamine and melamine with thiourea derived C3N4 yielded two dimensional (2D) nanosheets. Nanosheet-like C3N4 showed higher photoelectrochemical performance than that of particle-like nanostructures as specific surface area, and the redox ability of nanosheets are believed to be superior to particle-like nanostructures. TiO2/C3N4 displayed excellent photostability up to 20 h under continuous illumination. Thiourea plays an important role in enhancing the photoelectrochemical performance of TiO2/C3N4. This study emphasizes the fact that the improved photoelectrochemical performance can be achieved by varying the precursors of C3N4 in TiO2/C3N4 heterojunction. This is the first report to show the influence of C3N4 precursors on photoelectrochemical performance in TiO2/C3N4 systems. This would pave the way to explore different precursors influence on C3N4 with respect to the photoelectrochemical response of TiO2/C3N4 heterojunction photoanode.

Funder

Basic Science Research Program

National research foundation of korea

Ministry of Science

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3