Simulating Urban Element Design with Pedestrian Attention: Visual Saliency as Aid for More Visible Wayfinding Design

Author:

Kim Gwangbin1ORCID,Yeo Dohyeon1,Lee Jieun1ORCID,Kim SeungJun12ORCID

Affiliation:

1. School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea

2. AI Graduate School, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea

Abstract

Signs, landmarks, and other urban elements should attract attention to or harmonize with the environment for successful landscape design. These elements also provide information during navigation—particularly for people with cognitive difficulties or those unfamiliar with the geographical area. Nevertheless, some urban components are less eye-catching than intended because they are created and positioned irrespective of their surroundings. While quantitative measures such as eye tracking have been introduced, they help the initial or final stage of the urban design process and they involve expensive experiments. We introduce machine-learning-predicted visual saliency as iterative feedback for pedestrian attention during urban element design. Our user study focused on wayfinding signs as part of urban design and revealed that providing saliency prediction promoted a more efficient and helpful design experience without compromising usability. The saliency-guided design practice also contributed to producing more eye-catching and aesthetically pleasing urban elements. The study demonstrated that visual saliency can lead to an improved urban design experience and outcome, resulting in more accessible cities for citizens, visitors, and people with cognitive impairments.

Funder

National Research Foundation of Korea

Korea Institute of Energy Technology Evaluation and Planning (KETEP), the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea

GIST-MIT Research Collaboration

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3