Carbon Pool Dynamic and Soil Microbial Respiration Affected by Land Use Alteration: A Case Study in Humid Subtropical Area

Author:

Ghorbani Mohammad1ORCID,Amirahmadi Elnaz1ORCID,Konvalina Petr1ORCID,Moudrý Jan1,Kopecký Marek1ORCID,Hoang Trong Nghia1ORCID

Affiliation:

1. Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 370 05 Ceske Budejovice, Czech Republic

Abstract

Alterations of soil characteristics frequently accompany adaptations of pristine areas to different land uses, and these shifts have an impact on the overall ecosystem. Soil carbon stores and atmospheric CO2 emissions are directly affected by those adaptations in farming management and land usage. To comprehend the mechanisms involved in the carbon pool, this study was conducted in a subtropical region by considering six contiguous land uses; pasture, rice land, kiwi orchard, tea land, woodland, and uncultivated land. A CO2 trap was used to quantify CO2 emissions for six weeks, and the obtained data were used to analyze CO2 respiration. In comparison to other land uses, the pasture and woodland showed the best results in soil microbial respiration (SMR), significantly higher than other land uses, with values of 2561.2 and 2334.8 mg CO2-C kg−1 soil, respectively. Tea land and uncultivated land demonstrated considerably increased microbial metabolic quotients (MMQ) compared to other land uses. Whereas with an increase in soil depth, the MMQ significantly increased in tea and uncultivated lands, other land uses did not show significant changes with depth. Compared to other land uses, pasture, and forest areas boosted soil organic carbon (SOC) and microbial biomass carbon (MBC) both in the top and subsoil. It is reasonable to assume that the amount of SOC and MBC in the soil significantly dropped when the land was converted from pasture and woodland to other land uses.

Funder

University of South Bohemia in České Budějovice

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3