An Improved Three-Way Clustering Based on Ensemble Strategy

Author:

Wu Tingfeng,Fan Jiachen,Wang PingxinORCID

Abstract

As a powerful data analysis technique, clustering plays an important role in data mining. Traditional hard clustering uses one set with a crisp boundary to represent a cluster, which cannot solve the problem of inaccurate decision-making caused by inaccurate information or insufficient data. In order to solve this problem, three-way clustering was presented to show the uncertainty information in the dataset by adding the concept of fringe region. In this paper, we present an improved three-way clustering algorithm based on an ensemble strategy. Different to the existing clustering ensemble methods by using various clustering algorithms to produce the base clustering results, the proposed algorithm randomly extracts a feature subset of samples and uses the traditional clustering algorithm to obtain the diverse base clustering results. Based on the base clustering results, labels matching is used to align all clustering results in a given order and voting method is used to obtain the core region and the fringe region of the three way clustering. The proposed algorithm can be applied on the top of any existing hard clustering algorithm to generate the base clustering results. As examples for demonstration, we apply the proposed algorithm on the top of K-means and spectral clustering, respectively. The experimental results show that the proposed algorithm is effective in revealing cluster structures.

Funder

National Natural Science Foundation of China

the Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang Province

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3