DTCRSKG: A Deep Travel Conversational Recommender System Incorporating Knowledge Graph

Author:

Fang Hui,Chen Chongcheng,Long Yunfei,Xu Ge,Xiao Yongqiang

Abstract

In the era of information explosion, it is difficult for people to obtain their desired information effectively. In tourism, a travel recommender system based on big travel data has been developing rapidly over the last decade. However, most work focuses on click logs, visit history, or ratings, and dynamic prediction is absent. As a result, there are significant gaps in both dataset and recommender models. To address these gaps, in the first step of this study, we constructed two human-annotated datasets for the travel conversational recommender system. We provided two linked data sets, namely, interaction sequence and dialogue data sets. The usage of the former data set was done to fully explore the static preference characteristics of users based on it, while the latter identified the dynamics changes in user preference from it. Then, we proposed and evaluated BERT-based baseline models for the travel conversational recommender system and compared them with several representative non-conversational and conversational recommender system models. Extensive experiments demonstrated the effectiveness and robustness of our approach regarding conversational recommendation tasks. Our work can extend the scope of the travel conversational recommender system and our annotated data can also facilitate related research.

Funder

National Key Research and Development Program of China

Central Leading Local Project "Fujian Mental Health Human-Computer Interaction Technology Research Cen-ter"

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DesPrompt: Personality-descriptive prompt tuning for few-shot personality recognition;Information Processing & Management;2023-09

2. Deep Learning-Based Recommendation System: Systematic Review and Classification;IEEE Access;2023

3. Counterfactual Explainable Conversational Recommendation;IEEE Transactions on Knowledge and Data Engineering;2023

4. Dialogue-Based User Needs Extraction for Effective Service Personalization;Lecture Notes in Computer Science;2023

5. Considering User Interests to Provid an Event Base News Stream Framework;2022 8th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS);2022-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3