High Spatial Resolution Nighttime PM2.5 Datasets in the Beijing–Tianjin–Hebei Region from 2015 to 2021 Using VIIRS/DNB and Deep Learning Model

Author:

Ma Yu12ORCID,Zhang Wenhao12ORCID,Chen Xiaoyang12,Zhang Lili3,Liu Qiyue12

Affiliation:

1. School of Remote Sensing and Information Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China

2. Hebei Collaborative Innovation Center for Aerospace Remote Sensing Information Processing and Application, Langfang 065000, China

3. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

Abstract

The concentration of particulate matter (PM2.5) can be estimated using satellite data collected during the daytime. However, there are currently no long-term evening PM2.5 datasets, and the application of low-light satellite data to analyze nighttime PM2.5 concentrations is limited. The Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS/DNB), meteorology, Digital Elevation Model, moon phase angle, and Normalized Digital Vegetation Index were used in this study to develop a Deep Neural Network model (DNN) for estimating the nighttime concentrations of PM2.5 in the Beijing–Tianjin–Hebei (BTH) region from 2015 to 2021. To evaluate the model’s performance from 2015 to 2021, a ten-fold cross-validation coefficient of determination was utilized (CV − R2 = 0.51 − 0.68). Using a high spatial resolution of 500 m, we successfully generated a PM2.5 concentration map for the BTH region. This finer resolution enabled a detailed representation of the PM2.5 distribution over the area. Interannual and seasonal trends in nighttime PM2.5 concentrations were analyzed. Winter had the highest seasonal spatial PM2.5, followed by spring and autumn, whereas summer had the lowest. The annual concentration of PM2.5 at night steadily decreased. Finally, the estimation of nighttime PM2.5 was applied in scenarios such as continuous day–night changes, rapid short-term changes, and single-point monitoring. A deeper understanding of PM2.5, enabled by nightly PM2.5, will serve as an invaluable resource for future research.

Funder

Major Project of the High-Resolution Earth Observation System

North China Institute of Aerospace Engineering Foundation of Doctoral Research

National Science and Technology Major Project of High-Resolution Earth Observation System

Science and Technology Research Projects of Higher Education Institutions in Hebei Province

Hebei Province Graduate Student Innovation Ability Training Funding Project

Research on the typical optical sample library and key technologies of remote sensing satellites in the Beijing-Tianjin-Hebei region

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3