Elastoplastic Coupled Model of Saturated Soil Consolidation under Effective Stress

Author:

Galaviz-González José RobertoORCID,Horta-Rangel Jaime,Limón-Covarrubias Pedro,Avalos-Cueva DavidORCID,Cabello-Suárez Laura Yessenia,López-Lara Teresa,Hernández-Zaragoza Juan Bosco

Abstract

Soil’s consolidation is a geotechnical problem resulting from a stress-transfer process that initiates when the load is applied to the water contained in the soil, producing a reduction in pore water pressure and rearranging the solid particles, and thus causing a decrease in soil volume. Therefore, consolidation is a coupled flow–mechanical problem. Coupled models have been developed to simulate this phenomenon while considering different theories, providing consistent results. This paper presents an elastoplastic coupled model of consolidation under Terzaghi’s effective stress formulated using the equations of transient flow, balance moment, motion, and the critical state model that considered elastoplastic strains. The coupled model algorithm provided fast and easy results due to its flexibility, as it allowed combinations in loading and boundary conditions. Additionally, it considered the external/internal water flow as an inflow or outflow, which modified the pore water pressure and produced changes in the horizontal and vertical displacements. The numerical results obtained showed an appropriate behavior of the consolidation phenomenon, as well as the evolution of the vertical Uy and horizontal Ux displacements, water pressure pw, volumetric εv and deviatoric εq strain, mean σp and deviatoric σq stress, volumetric variation ∆εv, and elastic/plastic behavior of the finite elements while considering the yield surface of the critical state.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3