Evaluating the Accuracy and Spatial Agreement of Five Global Land Cover Datasets in the Ecologically Vulnerable South China Karst

Author:

Liu Pengyu,Pei Jie,Guo Han,Tian HaifengORCID,Fang Huajun,Wang LiORCID

Abstract

Accurate and reliable land cover information is vital for ecosystem management and regional sustainable development, especially for ecologically vulnerable areas. The South China Karst, one of the largest and most concentrated karst distribution areas globally, has been undergoing large-scale afforestation projects to combat accelerating land degradation since the turn of the new millennium. Here, we assess five recent and widely used global land cover datasets (i.e., CCI-LC, MCD12Q1, GlobeLand30, GlobCover, and CGLS-LC) for their comparative performances in land dynamics monitoring in the South China Karst during 2000–2020 based on the reference China Land Use/Cover Database. The assessment proceeded from three aspects: areal comparison, spatial agreement, and accuracy metrics. Moreover, divergent responses of overall accuracy with regard to varying terrain and geomorphic conditions have also been quantified. The results reveal that obvious discrepancies exist amongst land cover maps in both area and spatial patterns. The spatial agreement remains low in the Yunnan–Guizhou Plateau and heterogeneous mountainous karst areas. Furthermore, the overall accuracy of the five datasets ranges from 40.3% to 52.0%. The CGLS-LC dataset, with the highest accuracy, is the most accurate dataset for mountainous southern China, followed by GlobeLand30 (51.4%), CCI-LC (50.0%), MCD12Q1 (41.4%), and GlobCover (40.3%). Despite the low overall accuracy, MCD12Q1 has the best accuracy in areas with an elevation above 1200 m or a slope greater than 25°. With regard to geomorphic types, accuracy in non-karst areas is evidently higher than in karst areas. Additionally, dataset accuracy declines significantly (p < 0.05) with an increase in landscape heterogeneity in the region. These findings provide useful guidelines for future land cover mapping and dataset fusion.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3