Temporal Variation and Component Allocation Characteristics of Geometric and Physical Parameters of Maize Canopy for the Entire Growing Season

Author:

Li BingzeORCID,Ma Ming,Chen Shengbo,Li XiaofengORCID,Chen Si,Zheng Xingming

Abstract

The accurate monitoring of crop parameters is important for crop yield prediction and canopy parameter inversion from remote sensing. Process-based and semi-empirical crop models are the main approaches to modeling the temporal changes in crop parameters. However, the former requires too many input parameters and the latter has the problem of poor portability. In this study, new semi-empirical geometric and physical parameters of the maize canopy model (GPMCM) crop model adapted to northeast China were proposed based on a time-series field datasets collected from 11 sites in the Nong’an and Changling Counties of Jilin Province, China, during DOY (day of year) 163 to DOY 278 in 2021. The allocation characteristics of and correlations between each maize canopy parameter were investigated for the whole growing season using the 22 algorithms of crop parameters, and the following conclusions were obtained. (1) The high correlation coefficient (R mean = 0.79) of LAI with other canopy parameters indicated that it was a good indicator for predicting other parameters. (2) Better performance was achieved by the regression method based on the two-stage simulation. The root-mean-squared error (RMSE) of geometric parameters including maize height, stem long radius, and short radius were 12.91 cm, 0.74 mm, and 0.73 mm, respectively, and the RMSE of the physical parameters including the FAGB, AGB, VWC, and RWC of the stems and leaves, ranged from 0.05 kg/m2 to 4.24 kg/m2 (2.0% to 12.9% for mean absolute percentage error (MAPE)). (3) The extension of the field-scale GPMCM to the 500 m MODIS-scale still provided a good accuracy (MAPE: 11% to 18.5%) and confirmed the feasibility of the large-scale application of the GPMCM. The proposed CPMCM can predict the temporal dynamics of maize geometric and physical parameters, and it is helpful to establish the forward and reverse models of remote sensing and improve the inversion accuracy of crop parameters.

Funder

the Strategic Priority Research Program of the Chinese Academy of Sciences, China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3