Automatic Labeled Dialogue Generation for Nursing Record Systems

Author:

Mairittha TittayaORCID,Mairittha NattayaORCID,Inoue Sozo

Abstract

The integration of digital voice assistants in nursing residences is becoming increasingly important to facilitate nursing productivity with documentation. A key idea behind this system is training natural language understanding (NLU) modules that enable the machine to classify the purpose of the user utterance (intent) and extract pieces of valuable information present in the utterance (entity). One of the main obstacles when creating robust NLU is the lack of sufficient labeled data, which generally relies on human labeling. This process is cost-intensive and time-consuming, particularly in the high-level nursing care domain, which requires abstract knowledge. In this paper, we propose an automatic dialogue labeling framework of NLU tasks, specifically for nursing record systems. First, we apply data augmentation techniques to create a collection of variant sample utterances. The individual evaluation result strongly shows a stratification rate, with regard to both fluency and accuracy in utterances. We also investigate the possibility of applying deep generative models for our augmented dataset. The preliminary character-based model based on long short-term memory (LSTM) obtains an accuracy of 90% and generates various reasonable texts with BLEU scores of 0.76. Secondly, we introduce an idea for intent and entity labeling by using feature embeddings and semantic similarity-based clustering. We also empirically evaluate different embedding methods for learning good representations that are most suitable to use with our data and clustering tasks. Experimental results show that fastText embeddings produce strong performances both for intent labeling and on entity labeling, which achieves an accuracy level of 0.79 and 0.78 f1-scores and 0.67 and 0.61 silhouette scores, respectively.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3