Investigation of the Effects of Energy-Efficient Drying Techniques and Extraction Methods on the Bioactive and Functional Activity of Banana Inflorescence

Author:

Senevirathna Nuwanthi12ORCID,Hassanpour Morteza12,O’Hara Ian1234,Karim Azharul12ORCID

Affiliation:

1. School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000, Australia

2. Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia

3. ARC Industrial Transformation Training Centre for Biopolymers and Biocomposites, Queensland University of Technology, Brisbane 4000, Australia

4. ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane 4000, Australia

Abstract

Plant-derived foods with therapeutic potential have strong connection with both the pharmaceutical and nutraceutical industries. The effectiveness of these therapeutic properties is heavily influenced by the thermal treatment during drying and extraction methods. Traditional convective drying is a very energy incentive and lengthy process. Although some advanced and hybrid drying methods have been developed, these have not been applied in drying of banana inflorescence. In this study, we investigated the effects of freeze-drying (FD) and intermittent microwave convective drying (IMCD), as well as traditional convective oven drying (CD), on the polyphenol profile of banana inflorescence when extracted using the energy-efficient Accelerated Solvent Extraction method (ASE). Our findings revealed that the freeze-dried banana inflorescence powder exhibited the highest extraction of bioactive compounds when using 75% methanol at 100 °C as a solvent. It recovered 2906.3 ± 20.83 mg/100 g of the phenolic compounds and 63.12 ± 0.25% antioxidant activity under the optimal extraction conditions. While IMCD was found to be the second-best drying method in terms of preserving bioactive compounds, its operational time and cost were significantly lower compared to freeze-drying. Furthermore, our study confirmed the presence of medicinal compounds such as gallic acid, protocatechuic acid, caffeic acid, coumaric acid, catechin, ferulic acid, kaempferol, and quercetin in banana inflorescence. The development of innovative functional foods and pharmaceutical ingredients through green extraction methods and optimal drying conditions holds significant potential to save energy in the process, enhance human health, and promote environmental sustainability and circular economy processes. These efforts align with supporting Sustainable Development Goals (SDGs) 3 and 12.

Funder

QUTPRA scholarship—Queensland University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3