Numerical and Physical Modeling of a Tension-Leg Platform for Offshore Wind Turbines

Author:

Walia DanielORCID,Schünemann PaulORCID,Hartmann HaukeORCID,Adam FrankORCID,Großmann Jochen

Abstract

In order to tap the world wide offshore wind resources above deep waters, cost efficient floating platforms are inevitable. Tension-Leg Platforms (TLPs) could enable that crucial cost reduction in floating wind due to their smaller size and lighter weight compared to spars and semi-submersibles. The continuous development of the GICON®-TLP is driven by computer-aided engineering. So-called aero-hydro-servo-elastic coupled simulations are state-of-the-art for predicting loads and simulating the global system behavior for floating offshore wind turbines. Considering the complexity of such simulations, it is good scientific praxis to validate these numerical calculations by use of scaled model testing. This paper addresses the setup of the scaled model testing as carried out at the offshore basin of the École Centrale de Nantes, as well as the numerical model for the GICON®-TLP. The results of dedicated decay tests of the scaled model are used to validate the computational model at the first stage and to determine the natural frequencies of the system. Besides different challenges to the scaled model during the survey, it was possible to take these difficulties into account when updating the numerical model. The results show good agreements for the tank tests and the numerical model.

Funder

European Regional Development Fund

European Commission

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference43 articles.

1. The Paris Agreement,2016

2. Simulated labs are booming

3. On Global Electricity Usage of Communication Technology: Trends to 2030

4. Europe’s Onshore and Offshore Wind Energy Potential. An Assessment of Environmental and Economic Constraints,2009

5. SOCIAL ACCEPTANCE OF WIND ENERGY PROJECTS ”Winning Hearts and Minds” STATE-OF-THE-ART REPORT. The International Energy Agencyhttp://www.socialacceptance.ch/images/State-of-the-Art_Acceptance_Wind_Energy_Ireland.pdf

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3