A Tri-Layer Optimization Framework for Day-Ahead Energy Scheduling Based on Cost and Discomfort Minimization

Author:

Koukaras ParaskevasORCID,Gkaidatzis PaschalisORCID,Bezas Napoleon,Bragatto TommasoORCID,Carere FedericoORCID,Santori Francesca,Antal MarcelORCID,Ioannidis DimosthenisORCID,Tjortjis ChristosORCID,Tzovaras DimitriosORCID

Abstract

Over the past few decades, industry and academia have made great strides to improve aspects related with optimal energy management. These include better ways for efficient energy asset management, generating great opportunities for optimization of energy distribution, discomfort minimization, energy production, cost reduction and more. This paper proposes a framework for a multi-objective analysis, acting as a novel tool that offers responses for optimal energy management through a decision support system. The novelty is in the structure of the methodology, since it considers two distinct optimization problems for two actors, consumers and aggregators, with solution being able to completely or partly interact with the other one is in the form of a demand response signal exchange. The overall optimization is formulated by a bi-objective optimization problem for the consumer side, aiming at cost minimization and discomfort reduction, and a single objective optimization problem for the aggregator side aiming at cost minimization. The framework consists of three architectural layers, namely, the consumer, aggregator and decision support system (DSS), forming a tri-layer optimization framework with multiple interacting objects, such as objective functions, variables, constants and constraints. The DSS layer is responsible for decision support by forecasting the day-ahead energy management requirements. The main purpose of this study is to achieve optimal management of energy resources, considering both aggregator and consumer preferences and goals, whilst abiding with real-world system constraints. This is conducted through detailed simulations using real data from a pilot, that is part of Terni Distribution System portfolio.

Funder

H2020 European Research Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3