Assessment of the Capability of Landsat and BiodivMapR to Track the Change of Alpha Diversity in Dryland Disturbed by Mining

Author:

Zhang Yan1,Tang Jiajia2,Wu Qinyu1,Huang Shuai2,Yao Xijun23,Dong Jing2

Affiliation:

1. School of Public Policy & Management, China University of Mining and Technology, Xuzhou 221008, China

2. Engineering Research Center of Ministry of Education for Mine Ecological Restoration, School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, China

3. Institute of Territorial and Spatial Planning of Inner Mongolia, Hohhot 010070, China

Abstract

Remotely sensed spectral diversity is a promising method for investigating biodiversity. However, studies designed to assess the effectiveness of tracking changes in diversity using historical satellite imagery are lacking. This study employs open-access multispectral Landsat imagery and the BiodivMapR package to estimate the multi-temporal alpha diversity in drylands affected by mining. Multi-temporal parameters of alpha diversity were identified, such as vegetation indices, buffer zone size, and the number of clusters. Variations in alpha diversity were compared for various plant communities over time. The results showed that this method could effectively assess the alpha diversity of vegetation (R2, 0.68). The optimal parameters used to maximize the accuracy of alpha diversity were NDVI threshold, 0.01; size of buffer zones, 120 m × 120 m; number of clusters, 100. The root mean square error of the alpha diversity of herbs was lowest (0.26), while those of shrub and tree communities were higher (0.34–0.41). During the period 1990–2020, the study area showed an overall trend of increasing diversity, with surface mining causing a significant decrease in diversity when compared with underground mining. This illustrates that the quick development of remote sensing and image processing techniques offers new opportunities for monitoring diversity in both single and multiple time phases. Researchers should consider the plant community types involved and select locally suitable parameters. In the future, the generation of long-time series and finer resolution maps of diversity should be studied further in the aspects of spatial, functional, taxonomic, and phylogenetic diversity.

Funder

National Natural Science Foundation of China

Major Special Projects of the Third Comprehensive Scientific Exploration in Xinjiang

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3