Affiliation:
1. Institute of Computer Science and Engineering, Xi’an University of Technology, No. 5 South of Jinhua Road, Xi’an 710048, China
2. Shaanxi Key Laboratory of Network Computing and Security Technology, Xi’an 710048, China
3. College of Mathematics and Statistics, Hengyang Normal University, Hengyang 421002, China
4. School of Artificial Intelligence and Computer Science, Jiangnan University, 1800 of Lihu Road, Wuxi 214122, China
Abstract
The automatic extraction of individual tree from mobile laser scanning (MLS) scenes has important applications in tree growth monitoring, tree parameter calculation and tree modeling. However, trees often grow in rows and tree crowns overlap with varying shapes, and there is also incompleteness caused by occlusion, which makes individual tree extraction a challenging problem. In this paper, we propose a trunk-constrained and tree structure analysis method to extract trees from scanned urban scenes. Firstly, multi-feature enhancement is performed via PointNet to segment the tree points from raw urban scene point clouds. Next, the candidate local tree trunk clusters are obtained by clustering based on the intercepted local tree trunk layer, and the real local tree trunk is obtained by removing noise data. Then, the trunk is located and extracted by combining circle fitting and region growing, so as to obtain the center of the tree crown. Further, the points near the tree’s crown (core points) are segmented through distance difference, and the tree crown boundary (boundary points) is distinguished by analyzing the density and centroid deflection angle. Therefore, the core and boundary points are deleted to obtain the remaining points (intermediate points). Finally, the core, intermediate and boundary points, as well as the tree trunks, are combined to extract individual tree. The performance of the proposed method was evaluated on the Pairs-Lille-3D dataset, which is a benchmark for point cloud classification, and data were produced using a mobile laser system (MLS) applied to two different cities in France (Paris and Lille). Overall, the precision, recall, and F1-score of instance segmentation were 90.00%, 98.22%, and 99.08%, respectively. The experimental results demonstrate that our method can effectively extract trees with multiple rows of occlusion and improve the accuracy of tree extraction.
Funder
National Natural Science Foundation of China
Shaanxi key Laboratory project
Subject
General Earth and Planetary Sciences
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献