Trunk-Constrained and Tree Structure Analysis Method for Individual Tree Extraction from Scanned Outdoor Scenes

Author:

Ning Xiaojuan12,Ma Yishu1,Hou Yuanyuan1,Lv Zhiyong12,Jin Haiyan12ORCID,Wang Zengbo3,Wang Yinghui4

Affiliation:

1. Institute of Computer Science and Engineering, Xi’an University of Technology, No. 5 South of Jinhua Road, Xi’an 710048, China

2. Shaanxi Key Laboratory of Network Computing and Security Technology, Xi’an 710048, China

3. College of Mathematics and Statistics, Hengyang Normal University, Hengyang 421002, China

4. School of Artificial Intelligence and Computer Science, Jiangnan University, 1800 of Lihu Road, Wuxi 214122, China

Abstract

The automatic extraction of individual tree from mobile laser scanning (MLS) scenes has important applications in tree growth monitoring, tree parameter calculation and tree modeling. However, trees often grow in rows and tree crowns overlap with varying shapes, and there is also incompleteness caused by occlusion, which makes individual tree extraction a challenging problem. In this paper, we propose a trunk-constrained and tree structure analysis method to extract trees from scanned urban scenes. Firstly, multi-feature enhancement is performed via PointNet to segment the tree points from raw urban scene point clouds. Next, the candidate local tree trunk clusters are obtained by clustering based on the intercepted local tree trunk layer, and the real local tree trunk is obtained by removing noise data. Then, the trunk is located and extracted by combining circle fitting and region growing, so as to obtain the center of the tree crown. Further, the points near the tree’s crown (core points) are segmented through distance difference, and the tree crown boundary (boundary points) is distinguished by analyzing the density and centroid deflection angle. Therefore, the core and boundary points are deleted to obtain the remaining points (intermediate points). Finally, the core, intermediate and boundary points, as well as the tree trunks, are combined to extract individual tree. The performance of the proposed method was evaluated on the Pairs-Lille-3D dataset, which is a benchmark for point cloud classification, and data were produced using a mobile laser system (MLS) applied to two different cities in France (Paris and Lille). Overall, the precision, recall, and F1-score of instance segmentation were 90.00%, 98.22%, and 99.08%, respectively. The experimental results demonstrate that our method can effectively extract trees with multiple rows of occlusion and improve the accuracy of tree extraction.

Funder

National Natural Science Foundation of China

Shaanxi key Laboratory project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3