Satellite SAR Interferometry and On-Site Traditional SHM to Monitor the Post-Earthquake Behavior of the Civic Tower in L’Aquila (Abruzzo Region, Italy)

Author:

Caprino Amedeo1,Puliero Silvia1ORCID,Lorenzoni Filippo1,Floris Mario1ORCID,da Porto Francesca1

Affiliation:

1. Department of Geosciences, University of Padova, via Gradenigo 6, 35131 Padova, Italy

Abstract

Structural Health Monitoring (SHM) represents a very powerful tool to assess the health condition of buildings. In recent years, the growing availability of high-resolution SAR satellite images has made possible the application of multi-temporal Interferometric Synthetic Aperture Radar (MT-InSAR) techniques for structural monitoring purposes, with high precision, low costs, timesaving, and the possibility to investigate wide areas. However, a comprehensive validation of the effectiveness of MT-InSAR in this application field has not been achieved yet. For this reason, in this paper a comparison between interferometric data and on-site measurement of displacements is proposed. The application case study is the Civic Tower of the city of L’Aquila (Abruzzo Region, Italy). After the seismic events that affected the area in 2009, an on-site monitoring system was installed on the tower to detect any changes in the damage pattern in the period 2010–2013. Furthermore, images acquired by COSMO-SkyMed constellation in Stripmap mode (~3 m resolution) during the same period were processed by the Permanent Scatterer-InSAR (PSI) technique to estimate the deformation of the structure and the surrounding area. The obtained results indicate that both methods are consistent in the measurement of displacement trends of the building and a slight rotation/displacement of the tower was detected. Such evidence highlights both the huge potential and the limitations of using InSAR techniques for SHM.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference47 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3