Real-Time Wildfire Detection Algorithm Based on VIIRS Fire Product and Himawari-8 Data

Author:

Zhang Da1234,Huang Chunlin2ORCID,Gu Juan5,Hou Jinliang2,Zhang Ying2,Han Weixiao2ORCID,Dou Peng2,Feng Yaya2

Affiliation:

1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730000, China

2. Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730000, China

4. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730000, China

5. Key Laboratory of Western China’s Environmental Systems, Ministry of Education, Lanzhou University, Lanzhou 730000, China

Abstract

Wildfires have a significant impact on the atmosphere, terrestrial ecosystems, and society. Real-time monitoring of wildfire locations is crucial in fighting wildfires and reducing human casualties and property damage. Geostationary satellites offer the advantage of high temporal resolution and are gradually being used for real-time fire detection. In this study, we constructed a fire label dataset using the stable VNP14IMG fire product and used the random forest (RF) model for fire detection based on Himawari-8 multiband data. The band calculation features related brightness temperature, spatial features, and auxiliary data as input used in this framework for model training. We also used a recursive feature elimination method to evaluate the impact of these features on model accuracy and to exclude redundant features. The daytime and nighttime RF models (RF-D/RF-N) are separately constructed to analyze their applicability. Finally, we extensively evaluated the model performance by comparing them with the Japan Aerospace Exploration Agency (JAXA) wildfire product. The RF models exhibited higher accuracy, with recall and precision rates of 95.62% and 59%, respectively, and the recall rate for small fires was 19.44% higher than that of the JAXA wildfire product. Adding band calculation features and spatial features, as well as feature selection, effectively reduced the overfitting and improved the model’s generalization ability. The RF-D model had higher fire detection accuracy than the RF-N model. Omission errors and commission errors were mainly concentrated in the adjacent pixels of the fire clusters. In conclusion, our VIIRS fire product and Himawari-8 data-based fire detection model can monitor the fire location in real time and has excellent detection capability for small fires, making it highly significant for fire detection.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3