Effect of Triterpenoid Saponins as Foaming Agent on Mechanical Properties of Geopolymer Foam Concrete

Author:

Wang Xiaoyu1,Wu Yangyang1,Li Xiangguo2,Li Yuheng1,Tang Wen1,Dan Jianming1,Hong Chenglin1,Wang Jinyu1ORCID,Yang Xiaoqiang3

Affiliation:

1. School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China

2. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430074, China

3. Xinjiang Beixin Building Materials Industry Group Co., Ltd., Uygur 830011, China

Abstract

Geopolymer foam concrete (GFC), an emerging thermal insulation material known for its environmentally friendly and low-carbon attributes, has gained prominence for its use in bolstering building energy efficiency. A critical challenge in GFC production is foam destabilization by the alkaline environment in which foam is supersaturated with salt. In this study, GFC was prepared by using triterpene saponin (TS), sodium dodecyl sulphate (SDS), and cetyltrimethylammonium bromide (CTAB) as blowing agents, with fly ash as the precursor and calcium carbide slag (CA) combined with Glauber’s salt (GS, Na2SO4 ≥ 99%) as the activator. The effect of GFC on mechanical properties was analyzed by examining its fluidity, pore structure, dry density, and compressive strength. The results show that TS has a stable liquid film capable of adapting to the adverse effects of salt supersaturation and alkaline environments. TS is highly stable in the GFC matrix, and so the corresponding pore size is small, and the connectivity is low in the hardened GFC. In addition, the hydration products of GFC exhibit different morphologies depending on the surfactant used. TS has better water retention due to hydrogen bonding, which facilitates the hydration process.

Funder

special fund for scientific and technological development of China

Shihezi Key Laboratory Project of the eighth Division

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3