TRIM44, a Novel Prognostic Marker, Supports the Survival of Proteasome-Resistant Multiple Myeloma Cells

Author:

Vu Trung1,Wang Yuqin1,Fowler Annaliese2,Simieou Anton3,McCarty Nami1

Affiliation:

1. Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, Houston, TX 77021, USA

2. The Department of Biomedical Engineering, Texas A&M University, Houston, TX 77030, USA

3. The Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA

Abstract

TRIM44, a tripartite motif (TRIM) family member, is pivotal in linking the ubiquitin-proteasome system (UPS) to autophagy in multiple myeloma (MM). However, its prognostic impact and therapeutic potential remain underexplored. Here, we report that TRIM44 overexpression is associated with poor prognosis in a Multiple Myeloma Research Foundation (MMRF) cohort of 858 patients, persisting across primary and recurrent MM cases. TRIM44 expression notably increases in advanced MM stages, indicating its potential role in disease progression. Single-cell RNA sequencing across MM stages showed significant TRIM44 upregulation in smoldering MM (SMM) and MM compared to normal bone marrow, especially in patients with t(4;14) cytogenetic abnormalities. This analysis further identified high TRIM44 expression as predictive of lower responsiveness to proteasome inhibitor (PI) treatments, underscoring its critical function in the unfolded protein response (UPR) in TRIM44-high MM cells. Our findings also demonstrate that TRIM44 facilitates SQSTM1 oligomerization under oxidative stress, essential for its phosphorylation and subsequent autophagic degradation. This process supports the survival of PI-resistant MM cells by activating the NRF2 pathway, which is crucial for oxidative stress response and, potentially, other chemotherapy-induced stressors. Additionally, TRIM44 counters the TRIM21-mediated suppression of the antioxidant response, enhancing MM cell survival under oxidative stress. Collectively, our discoveries highlight TRIM44’s significant role in MM progression and resistance to therapy, suggesting its potential value as a therapeutic target.

Funder

National Cancer Institute

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3