Role of Piezo1 in Terminal Density Reversal of Red Blood Cells

Author:

Dey Kuntal1,van Cromvoirt Ankie M.1ORCID,Hegemann Inga2,Goede Jeroen S.34ORCID,Bogdanova Anna14ORCID

Affiliation:

1. Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland

2. Department of Medical Oncology and Hematology, University Hospital and University of Zurich, CH-8091 Zurich, Switzerland

3. Department of Hematology, Kantonsspital Winterthur, CH-8401 Winterthur, Switzerland

4. Zurich Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich, Switzerland

Abstract

Density reversal of senescent red blood cells has been known for a long time, yet the identity of the candidate ion transporter(s) causing the senescent cells to swell is still elusive. While performing fractionation of RBCs from healthy individuals in Percoll density gradient and characterization of the separated fractions, we identified a subpopulation of cells in low-density fraction (1.02% ± 0.47) showing signs of senescence such as loss of membrane surface area associated with a reduction in band 3 protein abundance, and Phosphatidylserine (PS) exposure to the outer membrane. In addition, we found that these cells are overloaded with Na+ and Ca2+. Using a combination of blockers and activators of ion pumps and channels, we revealed reduced activity of Plasma membrane Ca2+ ATPase and an increase in Ca2+ and Na+ leaks through ion channels in senescent-like cells. Our data revealed that Ca2+ overload in these cells is a result of reduced PMCA activity and facilitated Ca2+ uptake via a hyperactive Piezo1 channel. However, we could not exclude the contribution of other Ca2+-permeable ion channels in this scenario. In addition, we found, as a universal mechanism, that an increase in intracellular Ca2+ reduced the initially high selectivity of Piezo1 channel for Ca2+ and allowed higher Na+ uptake, Na+ accumulation, and swelling.

Funder

Swiss National Science Foundation (SNF) Sinergia

D-A-CH grant

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3