Pericyte-to-Endothelial Cell Communication via Tunneling Nanotubes Is Disrupted by a Diol of Docosahexaenoic Acid

Author:

Kempf Sebastian1,Popp Rüdiger1,Naeem Zumer1,Frömel Timo1ORCID,Wittig Ilka23,Klatt Stephan1ORCID,Fleming Ingrid13ORCID

Affiliation:

1. Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, 60596 Frankfurt am Main, Germany

2. Institute for Cardiovascular Physiology, Goethe University, 60596 Frankfurt am Main, Germany

3. German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, 60596 Frankfurt am Main, Germany

Abstract

The pericyte coverage of microvessels is altered in metabolic diseases, but the mechanisms regulating pericyte–endothelial cell communication remain unclear. This study investigated the formation and function of pericyte tunneling nanotubes (TNTs) and their impact on endothelial cell metabolism. TNTs were analyzed in vitro in retinas and co-cultures of pericytes and endothelial cells. Using mass spectrometry, the influence of pericytes on endothelial cell metabolism was examined. TNTs were present in the murine retina, and although diabetes was associated with a decrease in pericyte coverage, TNTs were longer. In vitro, pericytes formed TNTs in the presence of PDGF, extending toward endothelial cells and facilitating mitochondrial transport from pericytes to endothelial cells. In experiments with mitochondria-depleted endothelial cells displaying defective TCA cycle metabolism, pericytes restored the mitochondrial network and metabolism. 19,20-Dihydroxydocosapentaenoic acid (19,20-DHDP), known to disrupt pericyte–endothelial cell junctions, prevented TNT formation and metabolic rescue in mitochondria-depleted endothelial cells. 19,20-DHDP also caused significant changes in the protein composition of pericyte-endothelial cell junctions and involved pathways related to phosphatidylinositol 3-kinase, PDGF receptor, and RhoA signaling. Pericyte TNTs contact endothelial cells and support mitochondrial transfer, influencing metabolism. This protective mechanism is disrupted by 19,20-DHDP, a fatty acid mediator linked to diabetic retinopathy.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3