A Proteomic Approach Identified TFEB as a Key Player in the Protective Action of Novel CB2R Bitopic Ligand FD22a against the Deleterious Effects Induced by β-Amyloid in Glial Cells

Author:

Polini Beatrice1ORCID,Zallocco Lorenzo2ORCID,Gado Francesca34ORCID,Ferrisi Rebecca34,Ricardi Caterina1,Zuccarini Mariachiara5,Carnicelli Vittoria1,Manera Clementina4,Ronci Maurizio56ORCID,Lucacchini Antonio7,Zucchi Riccardo1,Giusti Laura8ORCID,Chiellini Grazia1ORCID

Affiliation:

1. Department of Pathology, University of Pisa, 56100 Pisa, Italy

2. Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy

3. Department of Pharmaceutical Sciences, University of Milan, 20133 Milano, Italy

4. Department of Pharmacy, University of Pisa, 56126 Pisa, Italy

5. Department of Medical, Oral and Biotechnological Sciences, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy

6. Interuniversitary Consortium for Engineering and Medicine (COIIM), 86100 Campobasso, Italy

7. Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy

8. School of Pharmacy, University of Camerino, 62032 Camerino, Italy

Abstract

Neurodegenerative diseases (NDDs) are progressive multifactorial disorders of the nervous system sharing common pathogenic features, including intracellular misfolded protein aggregation, mitochondrial deficit, and inflammation. Taking into consideration the multifaceted nature of NDDs, development of multitarget-directed ligands (MTDLs) has evolved as an attractive therapeutic strategy. Compounds that target the cannabinoid receptor type II (CB2R) are rapidly emerging as novel effective MTDLs against common NDDs, such as Alzheimer’s disease (AD). We recently developed the first CB2R bitopic/dualsteric ligand, namely FD22a, which revealed the ability to induce neuroprotection with fewer side effects. To explore the potential of FD22a as a multitarget drug for the treatment of NDDs, we investigated here its ability to prevent the toxic effect of β-amyloid (Aβ25–35 peptide) on human cellular models of neurodegeneration, such as microglia (HMC3) and glioblastoma (U87-MG) cell lines. Our results displayed that FD22a efficiently prevented Aβ25–35 cytotoxic and proinflammatory effects in both cell lines and counteracted β-amyloid-induced depression of autophagy in U87-MG cells. Notably, a quantitative proteomic analysis of U87-MG cells revealed that FD22a was able to potently stimulate the autophagy–lysosomal pathway (ALP) by activating its master transcriptional regulator TFEB, ultimately increasing the potential of this novel CB2R bitopic/dualsteric ligand as a multitarget drug for the treatment of NDDs.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3