Efficient Generation of Pancreatic Progenitor Cells from Induced Pluripotent Stem Cells Derived from a Non-Invasive and Accessible Tissue Source—The Plucked Hair Follicle

Author:

Fatehi Amatullah123,Sadat Marwa12,Fayyad Muneera3,Tang Jean24,Han Duhyun3,Rogers Ian M.124ORCID,Taylor Drew3

Affiliation:

1. Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada

2. Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada

3. Acorn Biolabs Inc., Toronto, ON M5G 2N2, Canada

4. Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON M5S 1A1, Canada

Abstract

The advent of induced pluripotent stem cell (iPSC) technology has brought about transformative advancements in regenerative medicine, offering novel avenues for disease modeling, drug testing, and cell-based therapies. Patient-specific iPSC-based treatments hold the promise of mitigating immune rejection risks. However, the intricacies and costs of producing autologous therapies present commercial challenges. The hair follicle is a multi-germ layered versatile cell source that can be harvested at any age. It is a rich source of keratinocytes, fibroblasts, multipotent stromal cells, and the newly defined Hair Follicle-Associated Pluripotent Stem Cells (HAP). It can also be obtained non-invasively and transported via regular mail channels, making it the ideal starting material for an autologous biobank. In this study, cryopreserved hair follicle-derived iPSC lines (HF-iPS) were established through integration-free vectors, encompassing a diverse cohort. These genetically stable lines exhibited robust expression of pluripotency markers, and showcased tri-lineage differentiation potential. The HF-iPSCs effectively differentiated into double-positive cKIT+/CXCR4+ definitive endoderm cells and NKX6.1+/PDX1+ pancreatic progenitor cells, affirming their pluripotent attributes. We anticipate that the use of plucked hair follicles as an accessible, non-invasive cell source to obtain patient cells, in conjunction with the use of episomal vectors for reprogramming, will improve the future generation of clinically applicable pancreatic progenitor cells for the treatment of Type I Diabetes.

Funder

Mitacs

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3