How Climate Change Impacts the Distribution of Lithocarpus hancei (Fagaceae), a Dominant Tree in East Asian Montane Cloud Forests

Author:

Yang Yongjingwen12345ORCID,Lin Lin123ORCID,Tan Yunhong45ORCID,Deng Min123ORCID

Affiliation:

1. School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China

2. Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming 650500, China

3. The Key Laboratory of Rare and Endangered Forest Plants of National Forestry and Grassland Administration & The Key Laboratory for Silviculture and Forest Resources Development of Yunnan Province, Yunnan Academy of Forestry and Grassland, Kunming 650201, China

4. Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China

5. Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Menglun 666303, China

Abstract

Subtropical montane moist evergreen broadleaf forests (MMEBFs) have a unique environmental envelope harboring a high percentage of endemic biota. This ecosystem is highly vulnerable, and little is known about its possible response to future climate change. In this study, we used Lithocarpus hancei (Fagaceae), a dominant tree in East Asian subtropical MMEBFs, as a proxy to investigate MMEBF distribution dynamics and key distribution restriction factors. In total, 607 L. hancei occurrence points were obtained after being gathered and filtered. The random forest model was selected as the best model. Eight environmental variables were selected to simulate the potential suitable areas of L. hancei under the Last Glacial Maximum (LGM), present, and future (2041–2060, 2061–2080, 2081–2100) climate change scenarios, including four shared socioeconomic pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5). Our results showed that precipitation of the warmest quarter, the precipitation of the driest month, the mean diurnal range, and temperature seasonality are the key factors affecting the spatial range of L. hancei with 11.2%, 10.9%, 8.1%, and 7.6% contributions, respectively. The current distribution of L. hancei is mainly within East and South China, with a scattered distribution in North Indo-China and the Southeast Himalayas. The highly suitable area only accounts for 9.7% of the total distribution area. The distribution area of the current suitability area is the smallest compared to that under LGM and future scenarios. In all the future climatic scenarios, the highly suitable areas of L. hancei would decrease or even disappear, whereas the medium- and low-suitability areas might increase with the centroid of the total suitable area northern. Its distribution in Central China, the Southern Himalayas, and Northern Indo-China will be lost in the future. Overall, our study predicted a prominent degradation of East Asian MMEBFs in the future. In situ and ex situ conservation on East Asian MMEBFs should be prioritized and enforced.

Funder

National Scientific Foundation of China

Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations

Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences

Yunnan Academy of Forestry and Grassland

Publisher

MDPI AG

Subject

Forestry

Reference73 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3