Affiliation:
1. Clinic for Orthopedic Surgery and Traumatology, Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
2. Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
Abstract
Background and Objectives: The study addresses a significant limitation in applying bone-patellar tendon-bone (BTB) grafts in anterior cruciate ligament (ACL) surgery. By exploring the tubularization of grafts, the study extends the understanding of this surgical technique. The dual approach of the study—focusing on biomechanical properties using an animal model and postoperative outcomes in humans—offers a comprehensive perspective. Materials and Methods: The experimental cohort encompassed ten pairs of fresh porcine bone-tendon-bone grafts. One graft in each pair underwent modification through sutures that transformed the flat graft into a cylindrical structure. Testing determined the force required for the modified graft to rupture mechanically, expressed as N/mm2, compared to conventionally prepared bone-tendon-bone grafts. The second phase of the research involved a prospective randomized clinical trial comprising 120 patients undergoing operative ACL reconstruction. For half the cases, grafts were tubularized using a random selection process. Clinical evaluations preoperatively and 12 months postoperatively employed the Tegner, Lysholm, and IKDC scoring scales for knee assessment. Results: Experiments showed that ligaments made using the tubularized surgical technique have statistically significantly higher values of measured force and higher maximum elongation values than ligaments made using the classical method. The clinical study concluded that there was no significant difference between the two groups of patients in the average score on the Tegner, Lysholm, and IKDC scales before and after surgery. Conclusions: The study results showed that suturing the graft does not negatively affect its biomechanical properties, and tubularization significantly increases the values of force required to cause rupture and the values of maximum elongation during rupture. Given the possibility of the one-year follow-up period being insufficient, future investigations should extend this period to acquire objective functional insights post-surgery.