First Tarsometatarsal Joint Fusion in Foot—A Biomechanical Human Anatomical Specimen Analysis with Use of Low-Profile Nitinol Staples Acting as Continuous Compression Implants

Author:

Sands Andrew1ORCID,Zderic Ivan2ORCID,Swords Michael3,Gehweiler Dominic2ORCID,Ciric Daniel2ORCID,Roth Christoph4,Nötzli Christoph5,Gueorguiev Boyko2ORCID

Affiliation:

1. New York–Presbyterian Lower Manhattan Hospital, New York, NY 10038, USA

2. AO Research Institute Davos, 7270 Davos, Switzerland

3. Michigan Orthopedic Center, Lansing, MI 48911, USA

4. DePuy Synthes, West Chester, PA 19380, USA

5. AO Foundation, 7270 Davos, Switzerland

Abstract

Background and Objectives: The aim of this study was to investigate under dynamic loading the potential biomechanical benefit of simulated first tarsometatarsal (TMT-1) fusion with low-profile superelastic nitinol staples used as continuous compression implants (CCIs) in two different configurations in comparison to crossed screws and locked plating in a human anatomical model. Materials and Methods: Thirty-two paired human anatomical lower legs were randomized to four groups for TMT-1 treatment via: (1) crossed-screws fixation with two 4.0 mm fully threaded lag screws; (2) plate-and-screw fixation with a 4.0 mm standard fully threaded cortex screw, inserted axially in lag fashion, and a 6-hole TMT-1 Variable-Angle (VA) Fusion Plate 2.4/2.7; (3) CCI fixation with two two-leg staples placed orthogonally to each other; (4) CCI fixation with one two-leg staple and one four-leg staple placed orthogonally to each other. Each specimen was biomechanically tested simulating forefoot weightbearing on the toes and metatarsals. The testing was performed at 35–37 °C under progressively increasing cyclic axial loading until construct failure, accompanied by motion tracking capturing movements in the joints. Results: Combined adduction and dorsiflexion movement of the TMT-1 joint in unloaded foot condition was associated with no significant differences among all pairs of groups (p ≥ 0.128). In contrast, the amplitude of this movement between unloaded and loaded foot conditions within each cycle was significantly bigger for the two CCI fixation techniques compared to both crossed-screws and plate-and-screw techniques (p ≤ 0.041). No significant differences were detected between the two CCI fixation techniques, as well as between the crossed-screws and plate-and-screw techniques (p ≥ 0.493) for this parameter of interest. Furthermore, displacements at the dorsal and plantar aspects of the TMT-1 joint in unloaded foot condition, together with their amplitudes, did not differ significantly among all pairs of groups (p ≥ 0.224). Conclusions: The low-profile superelastic nitinol staples demonstrate comparable biomechanical performance to established crossed-screws and plate-and-screw techniques applied for fusion of the first tarsometatarsal joint.

Funder

AO Technical Commission

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3