Prediction of Acute Respiratory Distress Syndrome in Traumatic Brain Injury Patients Based on Machine Learning Algorithms

Author:

Wang Ruoran,Cai Linrui,Zhang Jing,He Min,Xu Jianguo

Abstract

Background: Acute respiratory distress syndrome (ARDS) commonly develops in traumatic brain injury (TBI) patients and is a risk factor for poor prognosis. We designed this study to evaluate the performance of several machine learning algorithms for predicting ARDS in TBI patients. Methods: TBI patients from the Medical Information Mart for Intensive Care-III (MIMIC-III) database were eligible for this study. ARDS was identified according to the Berlin definition. Included TBI patients were divided into the training cohort and the validation cohort with a ratio of 7:3. Several machine learning algorithms were utilized to develop predictive models with five-fold cross validation for ARDS including extreme gradient boosting, light gradient boosting machine, Random Forest, adaptive boosting, complement naïve Bayes, and support vector machine. The performance of machine learning algorithms were evaluated by the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, accuracy and F score. Results: 649 TBI patients from the MIMIC-III database were included with an ARDS incidence of 49.5%. The random forest performed the best in predicting ARDS in the training cohort with an AUC of 1.000. The XGBoost and AdaBoost ranked the second and the third with an AUC of 0.989 and 0.815 in the training cohort. The random forest still performed the best in predicting ARDS in the validation cohort with an AUC of 0.652. AdaBoost and XGBoost ranked the second and the third with an AUC of 0.631 and 0.620 in the validation cohort. Several mutual top features in the random forest and AdaBoost were discovered including age, initial systolic blood pressure and heart rate, Abbreviated Injury Score chest, white blood cells, platelets, and international normalized ratio. Conclusions: The random forest and AdaBoost based models have stable and good performance for predicting ARDS in TBI patients. These models could help clinicians to evaluate the risk of ARDS in early stages after TBI and consequently adjust treatment decisions.

Funder

West China Hospital, Sichuan University

Chinese Academy of Sciences

National Natural Science Foundation of China

Sichuan Science and Technology Program

Sichuan University

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3