A Potential Radiomics–Clinical Model for Predicting Failure of Lymph Node Control after Definite Radiotherapy in Locally Advanced Head and Neck Cancer

Author:

Lee Seunghak1ORCID,Park Sunmin2ORCID,Rim Chai Hong2ORCID,Lee Young Hen3ORCID,Kwon Soon Young4,Oh Kyung Ho4,Yoon Won Sup2

Affiliation:

1. Core Research and Development Center, Korea University Ansan Hospital, Ansan 15355, Republic of Korea

2. Department of Radiation Oncology, College of Medicine, Korea University Ansan Hospital, 123 Jeokgeum-ro, Danwon-gu, Ansan 15355, Republic of Korea

3. Department of Radiology, Korea University Ansan Hospital, Ansan 15355, Republic of Korea

4. Department of Otolaryngology, Korea University Ansan Hospital, Ansan 15355, Republic of Korea

Abstract

Background and Objectives: To optimally predict lymph node (LN) failure after definite radiotherapy (RT) in head and neck cancer (HNC) with LN metastases, this study examined radiomics models extracted from CT images of different periods during RT. Materials and Methods: This study retrospectively collected radiologic and clinical information from patients undergoing definite RT over 60 Gy for HNC with LN metastases from January 2010 to August 2021. The same largest LNs in each patient from the initial simulation CT (CTpre) and the following simulation CT (CTmid) at approximately 40 Gy were indicated as regions of interest. LN failure was defined as residual or recurrent LN within 3 years after the end of RT. After the radiomics features were extracted, the radiomics alone model and the radiomics plus clinical parameters model from the set of CTpre and CTmid were compared. The LASSO method was applied to select features associated with LN failure. Results: Among 66 patients, 17 LN failures were observed. In the radiomics alone model, CTpre and CTmid had similar mean accuracies (0.681 and 0.697, respectively) and mean areas under the curve (AUC) (0.521 and 0.568, respectively). Radiomics features of spherical disproportion, size zone variance, and log minimum 2 were selected for CTpre plus clinical parameters. Volume, energy, homogeneity, and log minimum 1 were selected for CTmid plus clinical parameters. Clinical parameters including smoking, T-stage, ECE, and regression rate of LN were important for both CTpre and CTmid. In the radiomics plus clinical parameters models, the mean accuracy and mean AUC of CTmid (0.790 and 0.662, respectively) were more improved than those of CTpre (0.731 and 0.582, respectively). Conclusions: Both models using CTpre and CTmid were improved by adding clinical parameters. The radiomics model using CTmid plus clinical parameters was the best in predicting LN failure in our preliminary analyses.

Funder

Korea University Ansan Hospital

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3