Affiliation:
1. Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
Abstract
Background and Objectives: The rise in global diabetes cases, reaching a staggering 529 million in 2021 from 108 million in 1980, underscores the urgency of addressing its complications, notably macrovascular ones like coronary artery, cerebrovascular, and peripheral artery diseases, which contribute to over 50% of diabetes mortality. Atherosclerosis, linked to hyperglycemia-induced endothelial dysfunction, is pivotal in cardiovascular disease development. Cytokines, including pentraxin 3 (PTX3), copeptin, lipoprotein(a) [Lp(a)], and matrix metalloproteinase-9 (MMP-9), influence atherosclerosis progression and plaque vulnerability. Inhibiting atherosclerosis progression is crucial, especially in diabetic individuals. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs), increasingly used for type 2 diabetes, show promise in reducing the cardiovascular risk, sparking interest in their effects on atherogenesis. This study sought to examine the effects of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) on biomarkers that indicate the instability of atherosclerotic plaques. These biomarkers include pentraxin 3 (PTX3), copeptin (CPC), matrix metalloproteinase-9 (MMP-9), and lipoprotein(a) [Lp(a)]. Materials and Methods: A total of 34 participants, ranging in age from 41 to 81 years (with an average age of 61), who had been diagnosed with type 2 diabetes mellitus (with a median HbA1c level of 8.8%), dyslipidemia, and verified atherosclerosis using B-mode ultrasonography, were included in the study. All subjects were eligible to initiate treatment with a GLP-1 RA—dulaglutide. Results: Significant reductions in anthropometric parameters, blood pressure, fasting glucose levels, and HbA1c levels were observed posttreatment. Moreover, a notable decrease in biochemical markers associated with atherosclerotic plaque instability, particularly PTX3 and MMP-9 (p < 0.001), as well as Lp(a) (p < 0.05), was evident following the GLP-1 RA intervention. Conclusions: These findings underscore the potential of GLP-1 RAs in mitigating atherosclerosis progression and plaque vulnerability, thus enhancing cardiovascular outcomes in individuals with type 2 diabetes mellitus.
Funder
Medical University of Silesia
Reference55 articles.
1. GBD 2021 Diabetes Collaborators (2023). Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet, 402, 203–234.
2. Cardiovascular risk in diabetes mellitus: Epidemiology, assessment and prevention;Wong;Nat. Rev. Cardiol.,2023
3. Frostegård, J. (2013). Immunity, atherosclerosis and cardiovascular disease. BMC Med., 11.
4. Maruhashi, T., and Higashi, Y. (2021). Pathophysiological Association between Diabetes Mellitus and Endothelial Dysfunction. Antioxidants, 10.
5. Jebari-Benslaiman, S., Galicia-García, U., Larrea-Sebal, A., Olaetxea, J.R., Alloza, I., Vandenbroeck, K., Benito-Vicente, A., and Martín, C. (2022). Pathophysiology of Atherosclerosis. Int. J. Mol. Sci., 23.