EEG-Based Evidence of Mirror Neuron Activity from App-Mediated Stroke Patient Observation

Author:

Kim Jin-Cheol,Lee Hyun-MinORCID

Abstract

Background and Objectives: The mirror neuron system in the sensorimotor region of the cerebral cortex is equally activated during both action observation and execution. Action observation training mimics the functioning of the mirror neuron system, requiring patients to watch and imitate the actions necessary to perform activities of daily living. StrokeCare is a user-friendly application based on the principles of action observation training, designed to assist people recovering from stroke. Therefore, when observing the daily life behavior provided in the StrokeCare app, whether the MNS is activated and mu inhibition appears. Materials and Methods: We performed electroencephalography (EEG) on 24 patients with chronic stroke (infarction: 11, hemorrhage: 13) during tasks closely related to daily activities, such as dressing, undressing, and walking. The StrokeCare app provided action videos for patients to watch. Landscape imagery observation facilitated comparison among tasks. We analyzed the mu rhythm from the C3, CZ, and C4 regions and calculated the mean log ratios for comparison of mu suppression values. Results: The EEG mu power log ratios were significantly suppressed during action observation in dressing, undressing, walking, and landscape conditions, in decreasing order. However, there were no significant activity differences in the C3, C4 and CZ regions. The dressing task showed maximum suppression after a color spectrum was used to map the relative power values of the mu rhythm for each task. Conclusions: These findings reveal that the human mirror neuron system was more strongly activated during observation of actions closely related to daily life activities than landscape images.

Funder

Honam University

Publisher

MDPI AG

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Analysis of Mu Rhythm Desynchronization in Virtual Reality Locomotion;2024 IEEE 12th International Conference on Serious Games and Applications for Health (SeGAH);2024-08-07

2. A review about synergistic effects of transcranial direct current stimulation (tDCS) in combination with motor imagery (MI)-based brain computer interface (BCI) on post-stroke rehabilitation;Research on Biomedical Engineering;2023-12-30

3. Immediate Effect on Mu-rhythm of Somatosensory Cortex using Visual Feedback Training in Healthy Adults;Journal of The Korean Society of Physical Medicine;2023-08-31

4. Development of digital mirror therapy for stroke-severe patients;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

5. Effect of virtual running with exercise on functionality in pre-frail and frail elderly people: randomized clinical trial;Aging Clinical and Experimental Research;2023-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3