Frequency Analysis of Solar PV Power to Enable Optimal Building Load Control

Author:

Olama MohammedORCID,Dong Jin,Sharma Isha,Xue YaosuoORCID,Kuruganti Teja

Abstract

In this paper, we present a flexibility estimation mechanism for buildings’ thermostatically controlled loads (TCLs) to enable the distribution level consumption of the majority of solar photovoltaic (PV) generation by local building TCLs. The local consumption of PV generation provides several advantages to the grid operation as well as the consumers, such as reducing the stress on the distribution network, minimizing voltage fluctuations and two-way power flows in the distribution network, and reducing the required battery storage capacity for PV integration. This would result in increasing the solar PV generation penetration levels. The aims of this study are twofold. First, spectral (frequency) analyses of solar PV power generation together with the power consumption of multiple building TCLs (such as heating, ventilation, and air conditioning (HVAC) systems, water heaters, and refrigerators) are performed. These analyses define the bandwidth over which these TCLs can operate and also describe the PV generation frequency bandwidth. Such spectral analyses, in frequency domain, can help identify the flexible components of PV generation that can be consumed by the various TCLs through optimal building load utilization. Second, a quadratic optimization problem based on model predictive control is formulated to allow consuming most of the low and medium frequency content of the PV power locally by building TCLs, while maintaining occupants’ comfort and TCLs’ physical constraints. The solution to the proposed optimization problem is achieved using optimal control strategies. Numerical results show that most of the low and medium frequency content of the PV generation can be consumed locally by building TCLs. The remaining high-frequency content of the PV generation can then be stored/offset using energy storage systems.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3