DAssd-Net: A Lightweight Steel Surface Defect Detection Model Based on Multi-Branch Dilated Convolution Aggregation and Multi-Domain Perception Detection Head

Author:

Wang Ji1ORCID,Xu Peiquan12ORCID,Li Leijun3,Zhang Feng1

Affiliation:

1. School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

2. Shanghai Collaborative Innovation Center of Laser Advanced Manufacturing Technology, Shanghai University of Engineering Science, Shanghai 201620, China

3. Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada

Abstract

During steel production, various defects often appear on the surface of the steel, such as cracks, pores, scars, and inclusions. These defects may seriously decrease steel quality or performance, so how to timely and accurately detect defects has great technical significance. This paper proposes a lightweight model based on multi-branch dilated convolution aggregation and multi-domain perception detection head, DAssd-Net, for steel surface defect detection. First, a multi-branch Dilated Convolution Aggregation Module (DCAM) is proposed as a feature learning structure for the feature augmentation networks. Second, to better capture spatial (location) information and to suppress channel redundancy, we propose a Dilated Convolution and Channel Attention Fusion Module (DCM) and Dilated Convolution and Spatial Attention Fusion Module (DSM) as feature enhancement modules for the regression and classification tasks in the detection head. Third, through experiments and heat map visualization analysis, we have used DAssd-Net to improve the receptive field of the model while paying attention to the target spatial location and redundant channel feature suppression. DAssd-Net is shown to achieve 81.97% mAP accuracy on the NEU-DET dataset, while the model size is only 18.7 MB. Compared with the latest YOLOv8 model, the mAP increased by 4.69%, and the model size was reduced by 23.9 MB, which has the advantage of being lightweight.

Funder

Natural Science Foundation of Shanghai

Class III Peak Discipline of Shanghai—Materials Science and Engineering

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3